skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sivakumar, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Interplanetary (IP) shock is one of the most common phenomena that controls the shape and size of the magnetosphere. It affects the whole magnetosphere‐ionosphere‐thermosphere (MIT) system. We utilized the NO 5.3 m radiative emission, as observed by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) onboard NASA's TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite, to investigate its response to fast forward shock during 26 January 2017. The high latitude NO emission exhibits a strong enhancement (three times with respect to pre‐event value) during IP shock within 5 hr of onset. We analyzed both the energy dissipation sources and subsequent chemical mechanisms. The Field‐Aligned‐Current observations from Active Magnetosphere and Planetary Response Experiment (AMPERE), EISCAT measurements of Pederson conductivity and the defense Meteorological Satellite Program (DMSP F18) calculated hemispheric power demonstrate a strong intensification. The low energy particle precipitation from DMSP F18 spacecraft shows an early enhancement for energy less than 1 keV. The particle flux of higher energy responds later which remained elevated for longer duration. The thermospheric density and temperature also experience significant variation during IP shock. The NO molecule and temperature displayed an early enhancement. NO density increased by an order of magnitude with respect to the pre‐event value. About 20 increase is noticed in the temperature variation. The atomic oxygen and atomic nitrogen illustrate an early depletion during IP event. The enhanced response of NO cooling to IP shock can be attributed to the combined effects of energy input and subsequent chemical mechanisms. 
    more » « less
  2. Breaking the time-reversal symmetry on the surface of a topological insulator can open a gap for the linear dispersion and make the Dirac fermions massive. This can be achieved by either doping a topological insulator with magnetic elements or proximity-coupling it to magnetic insulators. While the exchange gap can be directly imaged in the former case, measuring it at the buried magnetic insulator/topological insulator interface remains to be challenging. Here, we report the observation of a large nonlinear Hall effect in iron garnet/Bi2Se3 heterostructures. Besides illuminating its magnetic origin, we also show that this nonlinear Hall effect can be utilized to measure the size of the exchange gap and the magnetic-proximity onset temperature. Our results demonstrate the nonlinear Hall effect as a spectroscopic tool to probe the modified band structure at magnetic insulator/topological insulator interfaces. 
    more » « less
  3. Abstract The total solar eclipse over the continental United States on 21 August 2017 offered a unique opportunity to study the dependence of the ionospheric density and morphology on incident solar radiation at different local times. The Super Dual Auroral Radar Network (SuperDARN) radars in Christmas Valley, Oregon, and Fort Hays, Kansas, are located slightly southward of the line of totality; they both made measurements of the eclipsed ionosphere. The received power of backscattered signal decreases during the eclipse, and the slant ranges from the westward looking radar beams initially increase and then decrease after totality. The time scales over which these changes occur at each site differ significantly from one another. For Christmas Valley the propagation changes are fairly symmetric in time, with the largest slant ranges and smallest power return occurring coincident with the closest approach of totality to the radar. The Fort Hays signature is less symmetric. In order to investigate the underlying processes governing the ionospheric eclipse response, we use a ray‐tracing code to simulate SuperDARN data in conjunction with different eclipsed ionosphere models. In particular, we quantify the effect of the neutral wind velocity on the simulated data by testing the effect of adding/removing various neutral wind vector components. The results indicate that variations in meridional winds have a greater impact on the modeled ionospheric eclipse response than do variations in zonal winds. The geomagnetic field geometry and the line‐of‐sight angle from each site to the Sun appear to be important factors that influence the ionospheric eclipse response. 
    more » « less